The search functionality is under construction.

Keyword Search Result

[Keyword] code division multiple access(83hit)

41-60hit(83hit)

  • Spreading Code Assignment for Multicarrier CDMA System over Frequency-Selective Fading Channels

    Takashi SHONO  Tomoyuki YAMADA  Kiyoshi KOBAYASHI  Katsuhiko ARAKI  Iwao SASASE  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E87-B No:12
      Page(s):
    3734-3746

    In multicarrier code division multiple access (MC-CDMA) systems, the orthogonality among the spreading codes is destroyed because the channels exhibit frequency-selective fading and the despreading stage performs gain control; that is, inter-code interference (ICI) can significantly degrade system performance. This paper proposes an optimum spreading code assignment method that reflects our analysis of ICI for up and downlink MC-CDMA cellular systems over correlated frequency-selective Rayleigh fading channels. At first, we derive theoretical expressions for the desired-to-undesired signal power ratio (DUR) as a quantitative representation of ICI; computer simulation results demonstrate the validity of the analytical results. Next, based on the ICI imbalance among code pairs, we assign specific spreading codes to users to minimize ICI (in short, to maximize the multiplexing performance); our proposed method considers the quality of service (QoS) policy of users or operators. We show that the proposed method yields better performance, in terms of DUR, than the conventional methods. The proposed method can maximize the multiplexing performance of a MC-CDMA cellular system once the channel model, spreading sequence, and combining strategy have been set. Three combining strategies are examined at the despreading stage for the uplink, equal gain combining (EGC), orthogonality restoring combining (ORC), and maximum ratio combining (MRC), while two are considered for the downlink, EGC and MRC.

  • Performance Analysis of Transmission Rate Scheduling Schemes for Integrated Voice/Data Service in Burst-Switching DS/CDMA System

    Meejoung KIM  

     
    LETTER-Wireless Communication Technology

      Vol:
    E87-B No:6
      Page(s):
    1691-1696

    This letter shows the performance comparisons of several different rate scheduling schemes for non-real time data service over the uplink of burst switching-based direct sequence code division multiple access (DS/CDMA) system to support the integrated voice/data service. The closed-form solution of optimal scheduling formulation, which minimizes average transmission delay when all of the active data users are transmitting simultaneously, is presented and mathematical analyses with other rate scheduling schemes, which provide efficiency criterion of transmission delay for rate scheduling schemes, are performed. Numerical results show the analyses explicitly.

  • The Effects of Varying Soft Handoff Thresholds in Cellular CDMA System

    Bongkarn HOMNAN  Watit BENJAPOLAKUL  Katsutoshi TSUKAMOTO  Shozo KOMAKI  

     
    PAPER-Fundamental Theories

      Vol:
    E87-B No:4
      Page(s):
    807-815

    In order to benefit from the advantages of soft handoff (SHO), it is important that the SHO parameters (the SHO thresholds; T_ADD and T_DROP are well assigned. T_ADD is the threshold used for triggering a pilot with high strength to be added to the Active Set (AS) list. The AS means the pilots associated with the forward traffic channels assigned to mobile station. In contrast, T_DROP is the threshold used for triggering a pilot with low strength to be dropped from the AS list. This paper analyzes the effects of varying SHO thresholds in a cellular code division multiple access (CDMA) system on the blocking probability based on traffic load and geometrical distances in hexagonal layout of base stations (BSs). In addition, the previously proposed traffic load equation is applied to the proposed SHO model for balancing the numbers of new and handoff calls on the forward link capacity in case of uniform traffic load. The results show that the blocking probability is more sensitive to T_DROP than to T_ADD variations.

  • A Novel Successive Interference Cancellation for CDMA

    Xiaodong REN  Shidong ZHOU  Zucheng ZHOU  

     
    LETTER-Wireless Communication Technology

      Vol:
    E87-B No:2
      Page(s):
    360-363

    This letter introduces a novel multi-user detection method, successive interference cancellation based on the order of log-likelihood-ratio(LLR-SIC), for code division multiple access (CDMA) systems. Unlike the conventional successive interference cancellation (SIC) based on the order of correlation, LLR-SIC operates on the fact that the user with the largest absolute value of log-likelihood ratio (LLR) should be first detected and cancelled from received signal. Simulation results show that LLR-SIC significantly outperforms the conventional SIC and partial parallel interference cancellation (P-PIC) over Rayleigh fading channels, and that LLR-SIC performance is not sensitive to channel estimation error at medium Eb/N0.

  • Error Free Condition Attained by Down-Link Power Control for CDMA Fixed Wireless Access System: Measured ISI Level of Modem and Power Control Simulation

    Noboru IZUKA  Yoshimasa DAIDO  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:1
      Page(s):
    56-67

    This paper describes feasibility of a proposed fixed wireless access system with CDMA technology. The system adopts a primary modulation of 16 QAM and the same frequency allocation in all cells to improve spectral efficiency. The system capacity is 1 Gbps per cell within 120 MHz bandwidth. The number of available orthogonal codes corresponds to the orthogonal code length in the system. All subscribers can attain an error free condition with output power control in the presence of inter-cell interference. The following two items are considered to examine the proposed system feasibility. 1) A test modem is fabricated, and a back-to-back modem BER performance is measured. An inter-symbol interference (ISI) level of the modem is estimated with the measured performance. 2) A computer simulation of down-link power control is carried out considering inter-cell interference and impairment factors of the power control such as intra-sector interference caused by the ISI and limited ranges of total and relative output power controls. The simulation results show that the proposed system would be feasible because the obtained power penalties caused by the above impairment factors are negligible.

  • Modified Kernel RLS-SVM Based Multiuser Detection over Multipath Channels

    Feng LIU  Taiyi ZHANG  Ruonan ZHANG  

     
    PAPER

      Vol:
    E86-A No:8
      Page(s):
    1979-1984

    For suppressing inter symbol interference, the support vector machine mutliuser detector (SVM-MUD) was adopted as a nonlinear method in direct sequence code division multiple access (DS-CDMA) signals transmitted through multipath channels. To solve the problems of the complexity of SVM-MUD model and the number of support vectors, based on recursive least squares support vector machine (RLS-SVM) and Riemannian geometry, a new algorithm for nonlinear multiuser detector is proposed. The algorithm introduces the forgetting factor to get the support vectors at the first training samples, then, uses Riemannian geometry to train the support vectors again and gets less improved support vectors. Simulation results illustrated that the algorithm simplifies SVM-MUD model at the cost of only a little more bit error rate and decreases the computational complexity. At the same time, the algorithm has an excellent effect on suppressing multipath interference.

  • Multi-Code Multi-Carrier CDMA Modulation with Adaptive Bit-Loading for VDSL Modems

    Massimo ROVINI  Giovanni VANINI  Luca FANUCCI  

     
    PAPER

      Vol:
    E86-A No:8
      Page(s):
    1985-1992

    This paper presents a new modulation scheme for Very-High Speed Digital Subscriber Lines (VDSL) modem, featuring a Multi-Code Multi-Carrier Code Division Multiple Access (MC2-CDMA) modulation. The system takes advantage from both the CDMA modulation and the Multi-Carrier transmission, and furthermore the channel throughput is increased adopting a multi-code approach. Starting from an overview of this novel scheme, encompassing the transmitter, channel and receiver description, a brief review of the equalization techniques is also considered and a proper bit-loading algorithm is derived to find out the achievable overall channel rate. The aim of this paper, besides introducing this novel scheme, is to demonstrate its suitability for a VDSL environment, where the achievable channel rate represents a real challenge. By means of a further optimisation, a general improvement of the system performance with respect to the standardized Discrete Multi Tone (DMT) modulation is also demonstrated.

  • A Modified Genetic Algorithm for Multiuser Detection in DS/CDMA Systems

    Mahrokh G. SHAYESTEH  Mohammad B. MENHAJ  Babak G. NOBARY  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:8
      Page(s):
    2377-2388

    Multiple access interference and near-far effect cause the performance of the conventional single user detector in DS/CDMA systems to degrade. Due to high complexity of the optimum multiuser detector, suboptimal multiuser detectors with less complexity and reasonable performance have received considerable attention. In this paper we apply the classic and a new modified genetic algorithm for multiuser detection of DS/CDMA signals. It is shown that the classic genetic algorithm (GA) reaches an error floor at high signal to noise ratios (SNR) while the performance of proposed modified GA is much better than the classic one and is comparable to the optimum detector with much less complexity. The results hold true for AWGN and fading channels. We also describe another GA called as meta GA to find the optimum parameters of the modified GA. We compare the performance of proposed method with the other detectors used in CDMA.

  • Transmit Power and Window Control to Reduce Inter-User Interference in CDMA Cellular Packet Systems

    Hiroyuki KAWAI  Shinzo OHKUBO  Toru OTSU  Hirohito SUDA  Yasushi YAMAO  

     
    PAPER

      Vol:
    E86-A No:7
      Page(s):
    1698-1706

    A novel interference reduction method, transmit power and window control (TPWC), is proposed to enhance the system capacity in the downlink of code division multiple access (CDMA) cellular packet systems. TPWC measures the propagation conditions and calculates the required instantaneous transmit power between a base station (BS) and a mobile station (MS). Then, TPWC sends packets only during a transmit time-window, in which the packets can be sent with less power than a predetermined threshold. TPWC reduces the average transmit power at the cost of an extra transmission delay at the BS. Computer simulations show that TPWC enhances the system capacity by two-fold in a CDMA cellular packet system when each MS has a loading ratio of 0.5 and an average delay allowance of 5 ms for the unit packet length of 1 ms. Furthermore, this paper proposes a multi-link packet transmission (MLPT) scheme in order to reduce the delay caused by TPWC. When an MS is at the cell edge, packets are distributed by MLPT to multiple BSs, from which packets are sent to the MS; thus, the transmission delay can be reduced by utilizing the transmit windows of each BS.

  • Wavelength Mismatch Tolerance in Wavelength-Hopping and Time-Spreading Optical CDMA Systems

    Tae-il CHAE  Hark YOO  Seong-sik MIN  Yong-hyub WON  

     
    LETTER-Fiber-Optic Transmission

      Vol:
    E86-B No:6
      Page(s):
    2015-2018

    The autocorrelation peak reduction due to wavelength mismatches between an encoder and a decoder in wavelength hopping-time spreading (WH-TS) two-dimensional optical CDMA systems is analyzed and verified by experiments. The tolerance of the wavelength mismatch is then obtained through the analysis of the system bit error rate (BER) performance. The results show that no significant BER performance is degraded only by the wavelength mismatches less than 0.1 nm which corresponds to 25 percent of the typical fiber Bragg gratings' spectral width.

  • Performance Analysis of a DS-CDMA Cellular System with Cell Splitting into Macrocell and Microcell Architecture

    Jie ZHOU  Shigenobu SASAKI  Shogo MURAMATSU  Hisakazu KIKUCHI  Yoshikuni ONOZATO  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E86-B No:6
      Page(s):
    1967-1977

    The demand for wireless mobile communications has grown at a very high rate, recently. In order to solve the non-uniform traffic rates, the use of cell splits is unavoidable for balancing the traffic rate and maximizing total system capacity. For cell planning, a DS-CDMA cellular system can be comprise of different cell sizes because of different demands and population density of the service area. In this paper, we develop a general model to study the forward link capacity and outage probability of a DS-CDMA cellular system with mixed cell sizes. The analysis of outage probability is carried out using the log-normal approximation. When a macrocell is split into the three microcells, as an example, we calculate the multi-cross interferences between macrocells and microcells, and the forward link capacities for the microcells and the neighboring macrocells. The maximum allowable capacity plane for macrocell and microcell is also investigated. The numerical results and discussions with previous published results of reverse link are summarized.

  • A New Analog Correlator Circuit for DS-CDMA Wireless Applications

    Mostafa A. R. ELTOKHY  Boon-Keat TAN  Toshimasa MATSUOKA  Kenji TANIGUCHI  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E86-A No:5
      Page(s):
    1294-1301

    A new analog correlator circuit is proposed for direct sequence code division multiple access (DS-CDMA) demodulator. The circuit consists of only 16 switches, 4 capacitors and 2 level shifters. Control sequence requires only three clock phases. Simulation with code length of 127 reveals that the proposed circuit has a good ability to cancel off the charge error and dissipates 3.4mW at 128MHz. The circuit had been designed using a 0.6µm CMOS process. The area of 256µm 245µm is estimated to be 9 times smaller compared to other reported equivalent analog correlators.

  • Performance of a Burst Switching Scheme for CDMA-Based Wireless Packet Data Systems

    Sung Kyung KIM  Meejoung KIM  Chung Gu KANG  

     
    PAPER-Wireless Communication Switching

      Vol:
    E86-B No:3
      Page(s):
    1082-1093

    Emerging requirements for higher rate data services and better spectrum efficiency are the main issues of third-generation mobile radio systems. In particular, a new concept of burst switching has been introduced for supporting the packet data services in the CDMA-based wireless system. In the burst switching system, radio resources are allocated to users for the duration of data bursts, which is a series of packets, as opposed to the conventional packet switching scheme. To implement the burst switching scheme, three different states (active, control hold, dormant states) are defined and two transition timers are employed to release the fundamental and supplemental code channels, respectively, at certain instances. Furthermore, the system is subject to burst admission control policy, with which a burst is admitted only when the number of currently available channels is greater than the admission threshold. Since there exists a trade-off between the additional packet access delay during a burst and resource utilization depending on the time-out value of the transition timer and burst admission threshold, it is critical to understand the performance characteristics in terms of the underlying design parameters. In this paper, we develop an analytic model and present a Quasi-Birth-Death (QBD) queueing analysis for evaluating the performance of burst switching schemes. This work focuses on the trade-off studies for optimizing the time-out value of the transition timer so as to minimize the average delay performance. Theoretical performance measures are derived by means of the matrix geometric method and furthermore, some simulation results are presented to validate the proposed analytical approach.

  • Iterative Multiuser Detection and Decoding for Coded CDMA Systems in Frequency-Selective Fading Channels

    Hamid FARMANBAR  Masoumeh NASIRI-KENARI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E85-B No:12
      Page(s):
    2807-2815

    A receiver structure, which has linear computational complexity with the number of users, is proposed for decoding multiuser information data in a convolutionally coded asynchronous DS-CDMA system in multipath fading channels. The proposed receiver architecture consists of a multiuser likelihood calculator followed by a bank of soft-input soft-output (SISO) channel decoders. Information is fed back from SISO channel decoders to multiuser likelihood calculator, and the processing proceeds in an iterative fashion analogous to the decoding of turbo codes. A simplification to the above receiver structure is given too. Simulation results demonstrate that for both receiver structures at high signal-to-noise ratios (SNR) both multiple-access interference (MAI) and inter-symbol interference (ISI) are efficiently suppressed, and single-user performance is approached. Furthermore, the proposed iterative receiver is near-far resistant.

  • Group-Wise Transmission Rate Scheduling Scheme for Integrated Voice/Data Service in Burst-Switching DS/CDMA System

    Meejoung KIM  Chung Gu KANG  Ramesh R. RAO  

     
    LETTER-Wireless Communication Technology

      Vol:
    E85-B No:8
      Page(s):
    1618-1621

    This letter proposes a packet length-based group-wise transmission (LGT) rate scheduling scheme for non-real time data service for the uplink of direct sequence code division multiple access (DS/CDMA) system using the burst switching scheme to support the integrated voice/data service. The LGT scheme optimally determines two different rate groups and their optimal data rates so as to minimize the average packet transmission delay. It has shown that the packet transmission delay performance can be significantly improved over the conventional single-rate packet transmission scheme for integrated voice/data service. Furthermore, a main feature of the proposed scheme is simplicity in its implementation.

  • An Efficient Data Transmission Technique for VLSI Systems Using Multiple-Valued Code-Division Multiple Access

    Yasushi YUMINAKA  Shinya SAKAMOTO  

     
    PAPER

      Vol:
    E85-C No:8
      Page(s):
    1581-1587

    This paper investigates multiple-valued code-division multiple access (MV-CDMA) techniques and circuits for intra/inter-chip communication to achieve efficient data transmission in VLSI systems. To address the problems caused by interconnection complexity, we transmit multiplexed signals inside LSI systems employing pseudo-random orthogonal m-sequences as information carriers. A new class of multiple-valued CDMA techniques for intra-chip communication is discussed to demonstrate the feasibility of eliminating co-channel interference caused by a propagation delay of signals, e.g., clock skew. This paper describes the circuit configuration and performance evaluation of MV-CDMA systems for intra-chip communication. We first explain the principle of MV-CDMA technique, and then propose a bidirectional current-mode CMOS technique to realize compact correlation circuits for CDMA. Finally, we show the Spice and MATLAB simulation results of MV-CDMA systems, which indicate the excellent capabilities of eliminating co-channel interference.

  • Can Uplink Weights be Used for Downlink in TDD DS-CDMA Systems with Base Station Antenna Array?

    Ying-Chang LIANG  

     
    LETTER-Antenna and Propagation

      Vol:
    E85-B No:8
      Page(s):
    1627-1630

    For base station antenna array systems with time-division-duplex (TDD) mode, downlink channel responses are equal to uplink channel responses if the duplexing time is small, thus it is often believed that TDD mode simplies downlink beamforming problem as uplink weights can be applied for downlink directly. In this letter, we show that for TDD DS-CDMA systems, even though uplink and downlink channel responses are equal, optimal uplink weights are no longer equal to the optimal downlink ones due to asynchronous property in uplink and synchronous property in downlink, as well as different data rate traffic and QoS requirements. Computer simulations show that for asymmetric traffic, if uplink weights are used for downlink directly, downlink system capacity is less than 50% of that with optimal downlink weights.

  • Detection Loss Due to Phase Error in a Code Division Multiple Access System

    Jin Young KIM  

     
    LETTER-Wireless Communication Technology

      Vol:
    E85-B No:7
      Page(s):
    1389-1391

    Detection loss due to phase error in a carrier tracking loop is analyzed and simulated for a code division multiple access system with BPSK and QPSK modulations in a Rayleigh fading channel. For a specific BER, the detection loss due to phase error is defined as an increase of required SNR to maintain the same BER without phase error. A nonlinear Fokker-Planck method is employed to analyze first-order PLL (phase locked loop) performance. From the simulation results, it is confirmed that the phase noise induces significant detection loss, which eventually leads to degradation of the BER performance.

  • Forward Link Performance of TDMA/W-CDMA Spectrum Overlaid System with Interference Cancellation for Future Wireless Communications

    Jie ZHOU  Hisakazu KIKUCHI  Shigenobu SASAKI  Shogo MURAMATSU  Yoshikuni ONOZATO  

     
    PAPER

      Vol:
    E85-A No:7
      Page(s):
    1536-1545

    In this paper, the co-existence of TDMA and W-CDMA spectrum sharing system (TDMA/W-CDMA overlaid system) with cellular architecture is discussed. In this system, both systems share the same frequency band to improve the spectrum efficiency. Overall rate, bit error ratio (BER) and spectrum efficiency of the system are calculated for the forward link (down-link) in the presence of AWGN channel. Taking into account the path loss and shadow fading loss in this system with cellular architecture, W-CDMA applying interference cancellation (IC) shows a substantial difference in spectrum efficiency, the overlaid system can provide a greater overall rate and higher spectrum efficiency than a single multiple access-based system such as TDMA system or W-CDMA system. The interference cancellation can significantly improve BER of the spectrum overlaid system.

  • Performance Analysis of SIR-Based Closed-Loop Power Control with Feedback Errors

    Andrea ABRARDO  Giovanni GIAMBENE  David SENNATI  

     
    PAPER

      Vol:
    E85-B No:5
      Page(s):
    872-881

    This paper deals with a cellular system based on Code Division Multiple Access (CDMA) and investigates the performance of Signal-to-Interference (SIR)-based Closed Loop-Power Control (CLPC) schemes taking into account errors on the feedback channel that conveys the power control command from the base station to the mobile terminals. We have evaluated both the distribution of the received power at the base station and the optimum control step size that minimizes the Control Error (CE) standard deviation, a useful measure of the CLPC performance. The impact of interference variations has been deeply investigated for different mobility scenarios and for different feedback channel error conditions.

41-60hit(83hit)